Step of Proof: sq_stable__anti_sym
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
sq
stable
anti
sym
:
T
:Type,
R
:(
T
T
). SqStable(AntiSym(
T
;
x
,
y
.
R
(
x
,
y
)))
latex
by ((Unfold `anti_sym` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
.
t
(
x
)
,
t
T
,
P
Q
,
x
(
s1
,
s2
)
,
AntiSym(
T
;
x
,
y
.
R
(
x
;
y
))
,
,
x
:
A
.
B
(
x
)
,
x
(
s
)
Lemmas
sq
stable
equal
,
sq
stable
all
origin